字幕列表 影片播放 列印英文字幕 Most physical objects in everyday life maintain the same identity whether we’re interacting with them, or not. Like, a baseball is a baseball whether you're holding it in your hand or it's flying through the air. Even electrons are electrons whether they're part of an atom or flying freely through interstellar space; they have the same mass, same charge: they are electrons. But neutrinos, those weird, super light, super fast, electrically neutral, hard-to-interact-with particles - they are identity-agnostic. Neutrinos have different identities depending on whether they’re interacting with other particles, or traveling freely, and on top of that their identities can change over time! Here’s what I mean: when they interact with other particles, like when they're produced in fusion in the sun or in radioactive decay, there are three different kinds of neutrinos, characterized by the particles involved in their creation or annihilation. And when they're traveling through space, there are three different kinds of neutrinos, characterized by their masses. But these two sets of identities don't match up in a one-to-one correspondence; instead, each of the "interaction" identities is actually a mix of the three "traveling" identities. And this weirdness allows neutrinos to change their identities. That's because the traveling identities have different masses, so they travel differently from each other – technically what happens is they each pick up a complex-numbered phase depending on their mass and how far they’ve traveled, but I’ll just show that using arrows that rotate at different speeds, which is essentially the same thing. Anyway, because the arrows rotate at different speeds, over time a combination that initially looked like an electron-interacting neutrino might become the muon-interacting combination. And then, if you wait longer, the combination will look like an electron-interacting neutrino again, then muon-interacting, and so on, back and forth – all happening as the neutrino flies super fast through space. It’s kind of like if I took my violin and played an A , and somehow by the time the sound waves reached your ear, the relative strengths of the frequencies had shifted so you heard the sound as an E, or a D, or an A, depending on how far away you were. In fact, the oscillation of neutrinos back and forth between different identities was discovered in part because we didn’t see as many neutrinos coming from the sun as our understanding of fusion suggested. It turned out that about 2/3 of the electron-interacting neutrinos had turned into muon and tau-interacting neutrinos en route to the earth, in a very real, very long-range example of quantum superposition! Oh, and one other little technicality: even though the three “interaction”-neutrinos are named after the specific electron-family particles that are involved in their creation and annihilation, they can still interact with (that’s physics-speak for “bounce off of”) other members of the electron family as well as quarks . Ok, I’d like to thank the Heising Simons foundation for their support of this video and of neutrino research! They put me in touch with some of the neutrino researchers they help fund, who were awesome to talk to and learn from. And Heising Simons also funds a variety of research in other fields, like exoplanets, microscale gravity, climate change, and so on. To learn more about Heising Simons, check out heisingsimons.org.
B2 中高級 量子移形換影:中微子振盪 (Quantum SHAPE-SHIFTING: Neutrino Oscillations) 3 0 林宜悉 發佈於 2021 年 01 月 14 日 更多分享 分享 收藏 回報 影片單字