Placeholder Image

字幕列表 影片播放

  • Physicists love particlesand with good reasonalmost everything in the universe

    物理學家熱愛粒子,而且有好理由─宇宙中幾乎一切

  • is made up of particles, so the physicist’s approach to understanding the universe is

    都由粒子組成,因此物理學家了解宇宙的方法

  • to understand the particles that make it up. If you want to discover and catalogue new

    便是了解其組成粒子。如果你想發現並記錄新粒子

  • particles (which physicists do), here are three approaches you can take.

    (如同物理學家),提供你三招可以用。

  • First, you can take old particles we already know stuff about and just stick them together

    首先,你可以把已知的舊粒子組合起來

  • to build new *composite* particles. That’s what chemists and molecular biologists spend

    形成新的複合粒子。這就是化學家和分子生物學家

  • a lot of their time doing, and it’s kind of like figuring out what you can build with

    花很多時間在做的,有點類似讓你用樂高積木堆東西。

  • legos.

    第二,你可以讓舊粒子非常暴力地互相撞擊,不管事

  • Second, you can smash old particles together with ever increasing violence, either hoping

    想打散舊粒子成為其未知的組成,或想使

  • to break an old particle apart into previously unknown constituents or to excite a new particle

    潛伏於量子場中的粒子出現。有時候這招管用

  • into existence from the quantum fields that underly all reality. Sometimes this works

    且會撞出全新的宇宙基本組成,像夸克

  • and the smashing reveals an entirely new *fundamental* building block of the universe like quarks

    或希格斯粒子。但大多時候這只會產生一團亂,一場

  • or the Higgs boson. But most of the time it just makes a big mess, an explosion of old

    已知粒子四散的爆炸。

  • particles we already know about.

    第三,你可以把舊粒子放到新環境, 導致它們產生不同行為,或把

  • Third, you can put old particles in new environments so that they behave differently, or put old

    舊粒子用不同方式放在一起,使它們產生類似粒子的

  • particles together in new ways so that new particle-like behaviors emerge through their

    集體的量子交互作用。

  • *collective* quantum interactions.

    例如,在某些晶體中,移動的粒子並非墊子本身,

  • For example, in certain crystals, the particles that move around are not electrons themselves

    而是密集電子海中的空缺(電洞)。

  • but in fact holes or gaps in a densely packed sea of electrons.

    或當你把特定材料冷卻到極低溫,自由電子開始

  • Or, when you make certain materials really really cold, free electrons in them stop acting

    不像電子,開始集結成隊, 猶如缺乏原子核的奇異原子,在幾乎

  • like electrons and team up in pairs to act like weird electron-only atoms that move around

    沒有電阻的狀況下到處移動。

  • with essentially no resistance.

    或當你把特定金屬冷卻,電子開始表現得像

  • Or when you make certain metals really cold, electrons in them start acting as if they

    比平常重一千倍。

  • were 1000 times *heavier* than normal.

    再如果你做張非常薄幾乎是二維的砷化鎵薄片,加上

  • Or if you make a super thin essentially 2-dimensional sheet of gallium arsenide with a perpendicular

    垂直磁場、平行電子並極度冷卻,電子表現出

  • magnetic field and parallel electric field and make it really cold, electrons start behaving

    其電荷只有正常的數分之一。

  • as if they had an electric charge that’s a fraction of what they normally do.

    或你強迫電子進入一維直線,那些在線上前進後退的

  • Or if you force electrons into a special 1-dimensional line, the particles that move back and forth

    粒子開始表現得像拆解的電子,因此它們有些

  • along that line *look* like electrons, except separated so that some of them have the charge

    有電荷沒有自旋,有些會自旋卻無電荷。

  • of an electron but no spin, while others have the spin but no charge.

    或你把氦冷卻到極致,你會發現新出現的粒子行為就像

  • Or if you cool helium down super super cold, youll find emergent particles that behave

    希格斯粒子!這些出現的希格斯粒子 在1973年首度發現,比其基本構成

  • like higgs bosons! These emergent higgs bosons were first discovered in 1973, 40 years before

    在大強子對撞機中,以質子的暴力相撞法發現

  • the higgs boson fundamental particle was discovered at the Large Hadron Collider by violently

    早了將近40年!

  • smashing together protons.

    當然,在金屬電子海中出現的那些「粒子」

  • Of course, the particles that emerge when you put collections of electrons together

    並不算宇宙的基本組成,但它們更是多樣、

  • in materials aren’t fundamental constituents of the universe, but theyre far more diverse

    奇異、古怪又酷炫。不像搜尋已經存在於大自然中

  • and bizarre and weird and cool. And unlike searching for fundamental particles where

    的粒子,必須等待並觀察;我們可以主動尋找並編錄

  • you just have to wait and see what nature has in store, we can actively find and curate

    新生粒子,只要創造各種奇怪材料,其性質能夠提供

  • new emergent particles simply by making different weird materials that allow their emergent

    讓它們現身的條件。 另外,帶有這些粒子的材料具有真實且深遠的

  • properties to come to life. Plus, materials with emergent particles have real and far-reaching

    科技實用性:在電器、電腦晶片、磁浮列車

  • practical technological use: in electronics, computer chips, levitating high speed trains,

    甚至大強子對撞機裡,用來發現希格斯粒子的

  • and even the magnets and detectors used to discover the higgs boson at the Large Hadron

    磁鐵和偵測器。

  • Collider.

    本影片部分由Gordon and Betty Moore Foundation’s Emergent Phenomena

  • This video was supported in part by the Gordon and Betty Moore Foundation’s Emergent Phenomena

    EPiQS 支持奇異電子材料上的發現導向的研究

  • in Quantum Systems Initiative. EPiQS supports discovery-driven research on novel electronic

    並試圖刺激突破以徹底改變我們對

  • materials and aims to stimulate breakthroughs to fundamentally change our understanding

    事物組成原則的理解。想要學習更多,請至Moore.org或

  • of the organizing principles of complex matter. To learn more, visit Moore.org or follow the

    在Twitter上追蹤Moore foundation

  • Moore foundation on twitter.

Physicists love particlesand with good reasonalmost everything in the universe

物理學家熱愛粒子,而且有好理由─宇宙中幾乎一切

字幕與單字

單字即點即查 點擊單字可以查詢單字解釋