字幕列表 影片播放
-
If you were to take any everyday object, say a coffee cup, and break it in half,
如果你拿起任何日常生活的物品,比如說一個咖啡杯,把它分成兩半
-
then in half again, and keep carrying on, where would you end up?
然後再分成兩半,一直進行下去,最後會變成甚麼樣呢?
-
Could you keep on going forever?
你可以一直分割下去嗎?
-
Or would you find a set of indivisible building blocks out of which everything is made?
或是你會發現一組構成所有物品的不可分割的建構塊呢?
-
Physicists have found the latter- that matter is made of fundamental particles, the smallest things in the universe.
物理學者發現了後者 — 也就是物質是由基本粒子組成,粒子是宇宙中最小的東西。
-
Particles interact with each other according to a theory called the “Standard Model”.
根據「基本模型」理論,粒子之間互相影響。
-
The Standard Model is a remarkably elegant encapsulation
標準模型非常優雅的概括了
-
of the strange quantum world of indivisible, infinitely small particles.
不可分割的無限微小粒子的神奇量子世界。
-
It also covers the forces that govern how particles move,
它也涵蓋了控制粒子移動
-
interact, and bind together to give shape to the world around us.
互相影響與鍵結在一起給予我們周遭世界外形的作用力。
-
So how does it work?
所以它是怎麼運作的?
-
Zooming in on the fragments of the cup,
我們放大來看這個杯子的碎片
-
we see molecules, made of atoms bound up together.
我們看到由原子鍵結在一起的分子
-
A molecule is the smallest unit of any chemical compound.
分子是任何化合物的最小單位。
-
An atom is the smallest unit of any element in the periodic table.
一個原子是元素週期表上任何元素的最小單位。
-
But the atom is not the smallest unit of matter.
但原子不是物質的最小單位。
-
Experiments found that each atom has a tiny, dense nucleus,
實驗發現,每一個原子都有微小、緊密的原子核
-
surrounded by a cloud of even tinier electrons.
周圍圍繞著一團更小的電子。
-
The electron is, as far as we know,
電子,據我們所知
-
one of the fundamental, indivisible building blocks of the universe.
是宇宙中不可分割的基本建構塊之一。
-
It was the first Standard Model particle ever discovered.
它是第一個標準模型中被發現的粒子。
-
Electrons are bound to an atom's nucleus by electromagnetism.
電子透過電磁作用與原子核鍵結。
-
They attract each other by exchanging particles called photons,
它們透過交換「光子」這個粒子來相互吸引
-
which are quanta of light that carry the electromagnetic force,
「光子」是攜帶電磁力的光的量子
-
one of the fundamental forces of the Standard Model.
是標準模型的基本作用力之一。
-
The nucleus has more secrets to reveal, as it contains protons and neutrons.
原子核中還有更多秘密,因為它含有質子跟中子
-
Though once thought to be fundamental particles on their own, in 1968
儘管曾經被認為兩者都是基本粒子,西元 1968 年
-
physicists found that protons and neutrons are actually made of quarks,
物理學家發現質子跟中子其實是由夸克組成
-
which are indivisible.
夸克才是不可分割的。
-
A proton contains two “up” quarks and one “down” quark.
一個質子包含兩個「上夸克」跟一個「下夸克」。
-
A neutron contains two down quarks and one up.
一個中子包含兩個「下夸克」跟一個「上夸克」。
-
The nucleus is held together by the strong force,
原子核是透過強大的作用力結合在一起
-
another fundamental force of the Standard Model.
是標準模型中的另一個基本作用力。
-
Just as photons carry the electromagnetic force,
就像光子帶有電磁力
-
particles called gluons carry the strong force.
一個稱為「膠子」的粒子帶有強力。
-
Electrons, together with up and down quarks,
電子連同上下夸克
-
seem to be all we need to build atoms and therefore describe normal matter.
似乎是我們建構原子所需的一切,並形塑了一般的物質。
-
However, high energy experiments reveal that there are actually six quarks–
然而,高能量實驗顯示,其實有六種夸克
-
down & up, strange & charm, and bottom & top
上夸克與下夸克、奇異夸克與魅夸克、底夸克與頂夸克
-
- and they come in a wide range of masses.
而且它們質量相差甚大。
-
The same was found for electrons,
在電子也有相同的發現
-
which have heavier siblings called the muon and the tau.
電子也有質量較重的兄弟,稱為「渺子」跟「濤子」。
-
Why are there three (and only three) different versions of each of these particles?
這些粒子為什麼個別會有三種(也只有三種)不同版本?
-
This remains a mystery.
這還是個謎。
-
These heavy particles are only produced, for very brief moments, in high energy collisions, and are not seen in everyday life.
這些重粒子只有在瞬間高能量碰撞中才會產生,而且日常生活中看不到。
-
This is because they decay very quickly into the lighter particles.
這是因為它們很快就會衰變為較輕的粒子。
-
Such decays involve the exchange of force-carrying particles,
這種衰變包括帶作用力力子的交換
-
called the W and Z, which – unlike the photon – have mass.
稱為「W 玻色子」與「Z 玻色子」 — 與光子不同 — 具有質量。
-
They carry the weak force, the final force of the Standard Model.
它們帶有弱力,標準模型的最後一個作用力。
-
This same force allows protons and neutrons to transform into each other,
相同的力量使質子與中子互相轉換
-
a vital part of the fusion interactions that drive the Sun.
這是驅動太陽最重要的融合交互作用。
-
To observe the W and Z directly,
為了直接觀察 W 玻色子與 Z 玻色子
-
we needed the high energy collisions provided by particle accelerators.
我們需要透過粒子加速器提供高能量的碰撞。
-
There's another kind of Standard Model particle, called neutrinos.
標準模型粒子中還有另一種粒子,「微中子」
-
These only interact with other particles through the weak force.
這些只透過弱力來與其他力子交互作用。
-
Trillions of neutrinos, many generated by the sun, fly through us every second.
每秒都有數以億萬計的微中子從我們身邊飛過,許多都是由太陽生成的。
-
Measurements of weak interactions found that there are different kinds of neutrinos
弱交互作用的測量結果發現,微中子也存在
-
associated with the electron, muon, and tau.
與電子、渺子、濤子相關的不同微中子。
-
All these particles also have antimatter versions,
這些粒子也都有反物質版本
-
which have the opposite charge but are otherwise identical.
它們有相反的電荷,但其他地方是相同的。
-
Matter and antimatter particles are produced in pairs in high-energy collisions,
物質與反物質粒子在高能量碰撞中成對產生
-
and they annihilate each other when they meet.
而當他們相遇時互相抵銷。
-
The final particle of the Standard Model is the Higgs boson
標準模型中最後的粒子是「希格斯粒子」
-
– a quantum ripple in the background energy field of the universe.
一種宇宙的背景能量場中的量子漣漪。
-
Interacting with this field is how all the fundamental matter particles acquire mass, according to the Standard Model.
根據標準模型,所有的基本物質粒子透過與這個能量場的交互作用獲得質量。
-
The ATLAS Experiment on the Large Hadron Collider is studying the Standard Model in-depth.
大型強子對撞機的超環面儀器實驗 (A Toroidal LHC ApparatuS, ATLAS) 深入研究標準模型。
-
By taking precise measurements of the particles and forces that make up the universe,
透過對組成宇宙的粒子與作用力進行精準測量
-
ATLAS physicists can look for answers to mysteries not explained by the Standard Model.
超環面儀器物理學家可以找到標準模型無法解釋的神秘問題的答案。
-
For example, how does gravity fit in?
例如,怎麼加入重力的概念?
-
What is the real relationship between force carriers and matter particles?
帶作用力粒子和物質粒子間真正的關係是甚麼?
-
How can we describe “Dark Matter”,
我們要怎麼描述「暗物質」
-
which makes up most of the mass in the universe but remains unaccounted for?
許多宇宙中的質量都是由暗物質組成但還無法解釋?
-
While the Standard Model provides a beautiful explanation for the world around us,
雖然標準模型提供了一個很好的方法來解釋我們周遭的世界
-
there is still a universe's worth of mysteries left to explore.
宇宙中還是有多如牛毛的奧秘等著探索。