Placeholder Image

字幕列表 影片播放

  • I am a translator.

    譯者: Lilian Chiu 審譯者: Helen Chang

  • I translate from biology into mathematics

    我翻譯,

  • and vice versa.

    從生物學翻譯成數學,

  • I write mathematical models

    也從數學譯回生物學。

  • which, in my case, are systems of differential equations,

    我撰寫數學模型,

  • to describe biological mechanisms,

    用微分方程系統

  • such as cell growth.

    來描述生物的機制,

  • Essentially, it works like this.

    像是細胞的成長。

  • First, I identify the key elements

    基本上,它的運作如下。

  • that I believe may be driving behavior over time

    我先要找出關鍵的元素,

  • of a particular mechanism.

    那些我認為會隨著時間

  • Then, I formulate assumptions

    驅動特定機制行為的元素。

  • about how these elements interact with each other

    接下來我做假設,

  • and with their environment.

    臆測這些元素如何彼此互動、

  • It may look something like this.

    與環境互動。

  • Then, I translate these assumptions into equations,

    看起來像圖示這樣。

  • which may look something like this.

    然後我把這些假設翻譯成方程式,

  • Finally, I analyze my equations

    看起來像這樣(右圖)。

  • and translate the results back into the language of biology.

    最後,我分析方程式,

  • A key aspect of mathematical modeling

    再把結果譯回生物學的語言。

  • is that we, as modelers, do not think about what things are;

    建立數學模式的關鍵面向,

  • we think about what they do.

    並非我們這些建模的人 設想東西「是」什麼,

  • We think about relationships between individuals,

    而是「做」了什麼。

  • whether they be cells, animals or people,

    我們設想個體間的關係,

  • and how they interact with each other and with their environment.

    不論是細胞、動物或人,

  • Let me give you an example.

    設想他們如何彼此互動, 如何與環境互動。

  • What do foxes and immune cells have in common?

    讓我舉個例子。

  • They're both predators,

    狐狸和免疫細胞有什麼共通點?

  • except foxes feed on rabbits,

    兩者都是捕食者,

  • and immune cells feed on invaders, such as cancer cells.

    不過,狐狸吃兔子,

  • But from a mathematical point of view,

    免疫細胞吃癌細胞之類的入侵者。

  • a qualitatively same system of predator-prey type equations

    但從數學的觀點來看,

  • will describe interactions between foxes and rabbits

    用性質相同的 捕食者—獵物型方程式系統,

  • and cancer and immune cells.

    就能描述狐與兔間的互動,

  • Predator-prey type systems have been studied extensively

    及癌症與免疫細胞間的互動。

  • in scientific literature,

    捕食者—獵物型方程式系統

  • describing interactions of two populations,

    已經在科學文獻中被廣泛研究,

  • where survival of one depends on consuming the other.

    描述兩個族群間的互動,

  • And these same equations provide a framework

    其中一個族群的生存 仰賴消費另一個族群。

  • for understanding cancer-immune interactions,

    正是這些方程式提供架構

  • where cancer is the prey,

    來了解癌症—免疫間的互動,

  • and the immune system is the predator.

    癌症是獵物,

  • And the prey employs all sorts of tricks to prevent the predator from killing it,

    免疫系統是捕食者。

  • ranging from camouflaging itself

    而獵物會採用各種詭計 避免遭捕食者獵殺,

  • to stealing the predator's food.

    詭計的範圍從偽裝自己,

  • This can have some very interesting implications.

    到偷竊捕食者的食物都有。

  • For example, despite enormous successes in the field of immunotherapy,

    這意涵可能饒富興味。

  • there still remains somewhat limited efficacy

    例如,儘管免疫治療的領域 已取得巨大的成功,

  • when it comes solid tumors.

    遇到實質固態瘤時功效仍然有限。

  • But if you think about it ecologically,

    如果從生態的角度來想,

  • both cancer and immune cells --

    癌症和免疫細胞

  • the prey and the predator --

    ──捕食者和獵物──

  • require nutrients such as glucose to survive.

    皆需葡萄糖之類的營養才能生存。

  • If cancer cells outcompete the immune cells for shared nutrients

    在腫瘤微環境中競爭共同的養分時,

  • in the tumor microenvironment,

    如果癌症細胞勝過了免疫細胞,

  • then the immune cells will physically not be able to do their job.

    那麼免疫細胞將無法完成工作。

  • This predator-prey-shared resource type model

    我研究這種捕食者—獵物 共享資源形式的模型。

  • is something I've worked on in my own research.

    近期有實驗顯示,

  • And it was recently shown experimentally

    恢復腫瘤微環境的代謝平衡──

  • that restoring the metabolic balance in the tumor microenvironment --

    亦即確保免疫細胞能獲取食物──

  • that is, making sure immune cells get their food --

    能讓免疫細胞這捕食者取回優勢

  • can give them, the predators, back their edge in fighting cancer, the prey.

    來對抗癌症這獵物。

  • This means that if you abstract a bit,

    意思是,可用抽象一點的方式,

  • you can think about cancer itself as an ecosystem,

    把癌症本身設想像為生態系統,

  • where heterogeneous populations of cells compete and cooperate

    那裡的各種細胞族群

  • for space and nutrients,

    彼此競爭和合作以取得空間和營養,

  • interact with predators -- the immune system --

    和免疫系統這捕食者互動,

  • migrate -- metastases --

    遷移、轉移……

  • all within the ecosystem of the human body.

    全都發生在人體這生態系統中。

  • And what do we know about most ecosystems from conservation biology?

    我們從保育生物學的角度看, 對生態系統了解最多的是什麼?

  • That one of the best ways to extinguish species

    我們知道滅絕物種的最佳方式,

  • is not to target them directly

    不是直接針對物種,

  • but to target their environment.

    而是針對物種的環境。

  • And so, once we have identified the key components

    因此,一旦我們找出了

  • of the tumor environment,

    腫瘤環境的關鍵組成,

  • we can propose hypotheses

    我們就能提出假設、

  • and simulate scenarios and therapeutic interventions

    模擬情境和干預治療,

  • all in a completely safe and affordable way

    全都以安全和實惠的方式進行,

  • and target different components of the microenvironment

    針對微環境中的不同組成成份,

  • in such a way as to kill the cancer without harming the host,

    能夠殺死癌症卻不傷到宿主,

  • such as me or you.

    不傷到我或你。

  • And so while the immediate goal of my research

    所以,我研究的當前目標

  • is to advance research and innovation

    是推動研究和創新,

  • and to reduce its cost,

    並減少成本。

  • the real intent, of course, is to save lives.

    當然,真正的目的是要拯救人命。

  • And that's what I try to do

    那就是我試著在做的事,

  • through mathematical modeling applied to biology,

    將數學建模應用到生物學,

  • and in particular, to the development of drugs.

    特別是用在藥物的發展上。

  • It's a field that until relatively recently has remained somewhat marginal,

    直到最近,這一直是個 邊緣、不被重視的領域,

  • but it has matured.

    但它已經成熟了。

  • And there are now very well-developed mathematical methods,

    現在有發展得非常好的數學方法,

  • a lot of preprogrammed tools,

    有很多預編的程式工具,

  • including free ones,

    也有很多免費的工具,

  • and an ever-increasing amount of computational power available to us.

    我們能獲得的計算能力越來越多。

  • The power and beauty of mathematical modeling

    數學建模的力與美在於

  • lies in the fact that it makes you formalize,

    它能把我們的認知

  • in a very rigorous way,

    以非常嚴謹的方式形式化。

  • what we think we know.

    我們假設,

  • We make assumptions,

    把假設翻譯為方程式,

  • translate them into equations,

    進行模擬,

  • run simulations,

    都是要解答這個問題:

  • all to answer the question:

    在假設能夠成立的世界裡,

  • In a world where my assumptions are true,

    我預期看見什麼?

  • what do I expect to see?

    這是很簡單的概念性架構,

  • It's a pretty simple conceptual framework.

    重點是要問對問題。

  • It's all about asking the right questions.

    它能夠解放出許多 測試生物假設的機會。

  • But it can unleash numerous opportunities for testing biological hypotheses.

    如果我們的預測和觀察相吻合,

  • If our predictions match our observations,

    很棒!我們做對了。

  • great! -- we got it right, so we can make further predictions

    我們就能改變模型來進一步預測。

  • by changing this or that aspect of the model.

    然而如果預測和觀察不吻合,

  • If, however, our predictions do not match our observations,

    那就表示有些假設是錯的,

  • that means that some of our assumptions are wrong,

    我們對於背後生物學的關鍵機制

  • and so our understanding of the key mechanisms

    了解得還不夠完善。

  • of underlying biology

    幸運的是,因為這是模型,

  • is still incomplete.

    我們能控制所有的假設,

  • Luckily, since this is a model,

    所以能看過一個個假設,

  • we control all the assumptions.

    找出哪一個或哪幾個造成了不一致。

  • So we can go through them, one by one,

    接著就能把新辨識出來的知識落差,

  • identifying which one or ones are causing the discrepancy.

    用實驗性和理論性的方式補起來。

  • And then we can fill this newly identified gap in knowledge

    當然,生態系統都極度複雜,

  • using both experimental and theoretical approaches.

    試圖描述所有會動的部分,

  • Of course, any ecosystem is extremely complex,

    不僅很困難,也無法提供很多資訊。

  • and trying to describe all the moving parts is not only very difficult,

    還有時間範圍的議題,

  • but also not very informative.

    因為有些過程的時間範圍 發生在秒上,有些在分上,

  • There's also the issue of timescales,

    還有的是日、月、年。

  • because some processes take place on a scale of seconds, some minutes,

    未必都能在實驗裡分得開。

  • some days, months and years.

    有些發生得很快或很慢,

  • It may not always be possible to separate those out experimentally.

    實際上根本不可能去量。

  • And some things happen so quickly or so slowly

    但身為數學家,

  • that you may physically never be able to measure them.

    我們有能力放大 任何子系統的任何時間範圍,

  • But as mathematicians,

    並模擬在任何時間範圍內

  • we have the power to zoom in on any subsystem in any timescale

    所發生的干預效果。

  • and simulate effects of interventions

    當然,這不只是 建模者一個人的工作,

  • that take place in any timescale.

    一定要和生物學家密切合作才行。

  • Of course, this isn't the work of a modeler alone.

    這確實會需要一些翻譯的能力,

  • It has to happen in close collaboration with biologists.

    雙方都要。

  • And it does demand some capacity of translation

    從表述問題的理論開始,

  • on both sides.

    就能帶出許多機會

  • But starting with a theoretical formulation of a problem

    來測試假設、

  • can unleash numerous opportunities for testing hypotheses

    模擬情景和干預治療措施,

  • and simulating scenarios and therapeutic interventions,

    全都以安全的方式進行。

  • all in a completely safe way.

    它能夠辨視出知識的落差、

  • It can identify gaps in knowledge and logical inconsistencies

    邏輯的不一致,

  • and can help guide us as to where we should keep looking

    能引導我們應該持續探索的方向,

  • and where there may be a dead end.

    指出哪裡可能是死胡同。

  • In other words:

    換言之,

  • mathematical modeling can help us answer questions

    數學建模能協助我們回答

  • that directly affect people's health --

    直接影響人們健康的問題,

  • that affect each person's health, actually --

    其實會影響每個人的健康,

  • because mathematical modeling will be key

    因為數學建模將會是 推進個人化醫學的關鍵。

  • to propelling personalized medicine.

    而這全都涉及到:要問對問題,

  • And it all comes down to asking the right question

    要將問題翻譯成對的方程式,

  • and translating it to the right equation ...

    和再翻譯回來。

  • and back.

    謝謝。

  • Thank you.

    (掌聲)

  • (Applause)

I am a translator.

譯者: Lilian Chiu 審譯者: Helen Chang

字幕與單字

影片操作 你可以在這邊進行「影片」的調整,以及「字幕」的顯示

B1 中級 中文 美國腔 TED 捕食 免疫 細胞 數學 假設

【TED】Irina Kareva:數學可以幫助揭開癌症的祕密 (Math can help uncover cancer's secrets | Irina Kareva) (【TED】Irina Kareva: Math can help uncover cancer's secrets (Math can help uncover cancer's secrets | Irina Kareva))

  • 887 93
    Zenn 發佈於 2021 年 01 月 14 日
影片單字