## 字幕列表 影片播放

• I am a translator.

譯者: Lilian Chiu 審譯者: Helen Chang

• I translate from biology into mathematics

我翻譯，

• and vice versa.

從生物學翻譯成數學，

• I write mathematical models

也從數學譯回生物學。

• which, in my case, are systems of differential equations,

我撰寫數學模型，

• to describe biological mechanisms,

用微分方程系統

• such as cell growth.

來描述生物的機制，

• Essentially, it works like this.

像是細胞的成長。

• First, I identify the key elements

基本上，它的運作如下。

• that I believe may be driving behavior over time

我先要找出關鍵的元素，

• of a particular mechanism.

那些我認為會隨著時間

• Then, I formulate assumptions

驅動特定機制行為的元素。

• about how these elements interact with each other

接下來我做假設，

• and with their environment.

臆測這些元素如何彼此互動、

• It may look something like this.

與環境互動。

• Then, I translate these assumptions into equations,

看起來像圖示這樣。

• which may look something like this.

然後我把這些假設翻譯成方程式，

• Finally, I analyze my equations

看起來像這樣（右圖）。

• and translate the results back into the language of biology.

最後，我分析方程式，

• A key aspect of mathematical modeling

再把結果譯回生物學的語言。

• is that we, as modelers, do not think about what things are;

建立數學模式的關鍵面向，

• we think about what they do.

並非我們這些建模的人 設想東西「是」什麼，

• We think about relationships between individuals,

而是「做」了什麼。

• whether they be cells, animals or people,

我們設想個體間的關係，

• and how they interact with each other and with their environment.

不論是細胞、動物或人，

• Let me give you an example.

設想他們如何彼此互動， 如何與環境互動。

• What do foxes and immune cells have in common?

讓我舉個例子。

• They're both predators,

狐狸和免疫細胞有什麼共通點？

• except foxes feed on rabbits,

兩者都是捕食者，

• and immune cells feed on invaders, such as cancer cells.

不過，狐狸吃兔子，

• But from a mathematical point of view,

免疫細胞吃癌細胞之類的入侵者。

• a qualitatively same system of predator-prey type equations

但從數學的觀點來看，

• will describe interactions between foxes and rabbits

用性質相同的 捕食者—獵物型方程式系統，

• and cancer and immune cells.

就能描述狐與兔間的互動，

• Predator-prey type systems have been studied extensively

及癌症與免疫細胞間的互動。

• in scientific literature,

捕食者—獵物型方程式系統

• describing interactions of two populations,

已經在科學文獻中被廣泛研究，

• where survival of one depends on consuming the other.

描述兩個族群間的互動，

• And these same equations provide a framework

其中一個族群的生存 仰賴消費另一個族群。

• for understanding cancer-immune interactions,

正是這些方程式提供架構

• where cancer is the prey,

來了解癌症—免疫間的互動，

• and the immune system is the predator.

癌症是獵物，

• And the prey employs all sorts of tricks to prevent the predator from killing it,

免疫系統是捕食者。

• ranging from camouflaging itself

而獵物會採用各種詭計 避免遭捕食者獵殺，

• to stealing the predator's food.

詭計的範圍從偽裝自己，

• This can have some very interesting implications.

到偷竊捕食者的食物都有。

• For example, despite enormous successes in the field of immunotherapy,

這意涵可能饒富興味。

• there still remains somewhat limited efficacy

例如，儘管免疫治療的領域 已取得巨大的成功，

• when it comes solid tumors.

遇到實質固態瘤時功效仍然有限。

• But if you think about it ecologically,

如果從生態的角度來想，

• both cancer and immune cells --

癌症和免疫細胞

• the prey and the predator --

──捕食者和獵物──

• require nutrients such as glucose to survive.

皆需葡萄糖之類的營養才能生存。

• If cancer cells outcompete the immune cells for shared nutrients

在腫瘤微環境中競爭共同的養分時，

• in the tumor microenvironment,

如果癌症細胞勝過了免疫細胞，

• then the immune cells will physically not be able to do their job.

那麼免疫細胞將無法完成工作。

• This predator-prey-shared resource type model

我研究這種捕食者—獵物 共享資源形式的模型。

• is something I've worked on in my own research.

近期有實驗顯示，

• And it was recently shown experimentally

恢復腫瘤微環境的代謝平衡──

• that restoring the metabolic balance in the tumor microenvironment --

亦即確保免疫細胞能獲取食物──

• that is, making sure immune cells get their food --

能讓免疫細胞這捕食者取回優勢

• can give them, the predators, back their edge in fighting cancer, the prey.

來對抗癌症這獵物。

• This means that if you abstract a bit,

意思是，可用抽象一點的方式，

• you can think about cancer itself as an ecosystem,

把癌症本身設想像為生態系統，

• where heterogeneous populations of cells compete and cooperate

那裡的各種細胞族群

• for space and nutrients,

彼此競爭和合作以取得空間和營養，

• interact with predators -- the immune system --

和免疫系統這捕食者互動，

• migrate -- metastases --

遷移、轉移……

• all within the ecosystem of the human body.

全都發生在人體這生態系統中。

• And what do we know about most ecosystems from conservation biology?

我們從保育生物學的角度看， 對生態系統了解最多的是什麼？

• That one of the best ways to extinguish species

我們知道滅絕物種的最佳方式，

• is not to target them directly

不是直接針對物種，

• but to target their environment.

而是針對物種的環境。

• And so, once we have identified the key components

因此，一旦我們找出了

• of the tumor environment,

腫瘤環境的關鍵組成，

• we can propose hypotheses

我們就能提出假設、

• and simulate scenarios and therapeutic interventions

模擬情境和干預治療，

• all in a completely safe and affordable way

全都以安全和實惠的方式進行，

• and target different components of the microenvironment

針對微環境中的不同組成成份，

• in such a way as to kill the cancer without harming the host,

能夠殺死癌症卻不傷到宿主，

• such as me or you.

不傷到我或你。

• And so while the immediate goal of my research

所以，我研究的當前目標

• is to advance research and innovation

是推動研究和創新，

• and to reduce its cost,

並減少成本。

• the real intent, of course, is to save lives.

當然，真正的目的是要拯救人命。

• And that's what I try to do

那就是我試著在做的事，

• through mathematical modeling applied to biology,

將數學建模應用到生物學，

• and in particular, to the development of drugs.

特別是用在藥物的發展上。

• It's a field that until relatively recently has remained somewhat marginal,

直到最近，這一直是個 邊緣、不被重視的領域，

• but it has matured.

但它已經成熟了。

• And there are now very well-developed mathematical methods,

現在有發展得非常好的數學方法，

• a lot of preprogrammed tools,

有很多預編的程式工具，

• including free ones,

也有很多免費的工具，

• and an ever-increasing amount of computational power available to us.

我們能獲得的計算能力越來越多。

• The power and beauty of mathematical modeling

數學建模的力與美在於

• lies in the fact that it makes you formalize,

它能把我們的認知

• in a very rigorous way,

以非常嚴謹的方式形式化。

• what we think we know.

我們假設，

• We make assumptions,

把假設翻譯為方程式，

• translate them into equations,

進行模擬，

• run simulations,

都是要解答這個問題：

• all to answer the question:

在假設能夠成立的世界裡，

• In a world where my assumptions are true,

我預期看見什麼？

• what do I expect to see?

這是很簡單的概念性架構，

• It's a pretty simple conceptual framework.

重點是要問對問題。

它能夠解放出許多 測試生物假設的機會。

• But it can unleash numerous opportunities for testing biological hypotheses.

如果我們的預測和觀察相吻合，

• If our predictions match our observations,

很棒！我們做對了。

• great! -- we got it right, so we can make further predictions

我們就能改變模型來進一步預測。

• by changing this or that aspect of the model.

然而如果預測和觀察不吻合，

• If, however, our predictions do not match our observations,

那就表示有些假設是錯的，

• that means that some of our assumptions are wrong,

我們對於背後生物學的關鍵機制

• and so our understanding of the key mechanisms

了解得還不夠完善。

• of underlying biology

幸運的是，因為這是模型，

• is still incomplete.

我們能控制所有的假設，

• Luckily, since this is a model,

所以能看過一個個假設，

• we control all the assumptions.

找出哪一個或哪幾個造成了不一致。

• So we can go through them, one by one,

接著就能把新辨識出來的知識落差，

• identifying which one or ones are causing the discrepancy.

用實驗性和理論性的方式補起來。

• And then we can fill this newly identified gap in knowledge

當然，生態系統都極度複雜，

• using both experimental and theoretical approaches.

試圖描述所有會動的部分，

• Of course, any ecosystem is extremely complex,

不僅很困難，也無法提供很多資訊。

• and trying to describe all the moving parts is not only very difficult,

還有時間範圍的議題，

• but also not very informative.

因為有些過程的時間範圍 發生在秒上，有些在分上，

• There's also the issue of timescales,

還有的是日、月、年。

• because some processes take place on a scale of seconds, some minutes,

未必都能在實驗裡分得開。

• some days, months and years.

有些發生得很快或很慢，

• It may not always be possible to separate those out experimentally.

實際上根本不可能去量。

• And some things happen so quickly or so slowly

但身為數學家，

• that you may physically never be able to measure them.

我們有能力放大 任何子系統的任何時間範圍，

• But as mathematicians,

並模擬在任何時間範圍內

• we have the power to zoom in on any subsystem in any timescale

所發生的干預效果。

• and simulate effects of interventions

當然，這不只是 建模者一個人的工作，

• that take place in any timescale.

一定要和生物學家密切合作才行。

• Of course, this isn't the work of a modeler alone.

這確實會需要一些翻譯的能力，

• It has to happen in close collaboration with biologists.

雙方都要。

• And it does demand some capacity of translation

從表述問題的理論開始，

• on both sides.

就能帶出許多機會

• But starting with a theoretical formulation of a problem

來測試假設、

• can unleash numerous opportunities for testing hypotheses

模擬情景和干預治療措施，

• and simulating scenarios and therapeutic interventions,

全都以安全的方式進行。

• all in a completely safe way.

它能夠辨視出知識的落差、

• It can identify gaps in knowledge and logical inconsistencies

邏輯的不一致，

• and can help guide us as to where we should keep looking

能引導我們應該持續探索的方向，

• and where there may be a dead end.

指出哪裡可能是死胡同。

• In other words:

換言之，

• mathematical modeling can help us answer questions

數學建模能協助我們回答

• that directly affect people's health --

直接影響人們健康的問題，

• that affect each person's health, actually --

其實會影響每個人的健康，

• because mathematical modeling will be key

因為數學建模將會是 推進個人化醫學的關鍵。

• to propelling personalized medicine.

而這全都涉及到：要問對問題，

• And it all comes down to asking the right question

要將問題翻譯成對的方程式，

• and translating it to the right equation ...

和再翻譯回來。

• and back.

謝謝。

• Thank you.

（掌聲）

• (Applause)

I am a translator.

B1 中級 中文 美國腔 TED 捕食 免疫 細胞 數學 假設

# 【TED】Irina Kareva:數學可以幫助揭開癌症的祕密 (Math can help uncover cancer's secrets | Irina Kareva) (【TED】Irina Kareva: Math can help uncover cancer's secrets (Math can help uncover cancer's secrets | Irina Kareva))

• 887 93
Zenn 發佈於 2021 年 01 月 14 日