Placeholder Image

字幕列表 影片播放

  • This is Pleurobot.

    譯者: lisa li 審譯者: 易帆 余

  • Pleurobot is a robot that we designed to closely mimic a salamander species

    這是機械蠑螈,

  • called Pleurodeles waltl.

    機械蠑螈是一種遙控機具, 我們設計時,高度模擬了一類

  • Pleurobot can walk, as you can see here,

    稱為歐非肋突螈的兩棲類。

  • and as you'll see later, it can also swim.

    你可以看到,機械蠑螈能夠走路,

  • So you might ask, why did we design this robot?

    稍後你也會看到,它會游泳,

  • And in fact, this robot has been designed as a scientific tool for neuroscience.

    你可能會問,我們為甚麼要 設計這一類的遙控機械?

  • Indeed, we designed it together with neurobiologists

    事實上,這具機械是設計來 作為腦神經研究的科研工具。

  • to understand how animals move,

    我們也確實在設計的時候, 夥同腦神經學家們

  • and especially how the spinal cord controls locomotion.

    去理解動物怎樣律動,

  • But the more I work in biorobotics,

    尤其去理解脊髓如何控制肢體行動。

  • the more I'm really impressed by animal locomotion.

    但當我在機械生物做出愈多的研究,

  • If you think of a dolphin swimming or a cat running or jumping around,

    我愈訝異於動物的肢體行動。

  • or even us as humans,

    請你想像一下,一隻海豚的游泳 或一隻貓兒的奔跑跳躍,

  • when you go jogging or play tennis,

    或甚至是我們人類

  • we do amazing things.

    在慢跑或打網球時,

  • And in fact, our nervous system solves a very, very complex control problem.

    我們是在做驚奇的事情。

  • It has to coordinate more or less 200 muscles perfectly,

    事實上,我們的神經系統解決了 一個非常非常複雜的控制問題。

  • because if the coordination is bad, we fall over or we do bad locomotion.

    它需要完美得協調 大約二百組肌肉,

  • And my goal is to understand how this works.

    如果協調得不好, 我們會摔倒,或行動得蹩扭。

  • There are four main components behind animal locomotion.

    而我的目標就是要理解這是如何運作的。

  • The first component is just the body,

    動物的肢體行動, 有四個主要元件。

  • and in fact we should never underestimate

    第一個元件就是身體,

  • to what extent the biomechanics already simplify locomotion in animals.

    事實上,我們都不應該低估

  • Then you have the spinal cord,

    生物力學已經簡化動物的 肢體行動到哪種程度。

  • and in the spinal cord you find reflexes,

    第二個元件就是脊髓,

  • multiple reflexes that create a sensorimotor coordination loop

    你在脊髓裡可以找到反射作用,

  • between neural activity in the spinal cord and mechanical activity.

    多重反射作用會在脊髓的神經活動 與機械活動之間

  • A third component are central pattern generators.

    產生出一種 感知運動的協調迴路,

  • These are very interesting circuits in the spinal cord of vertebrate animals

    第三個元件是中樞模式產生器。

  • that can generate, by themselves,

    這些非常有趣的迴路, 存在於脊椎動物的脊髓裏,

  • very coordinated rhythmic patterns of activity

    當它接收到非常簡單的輸入訊號時,

  • while receiving only very simple input signals.

    它們可以自己產生出

  • And these input signals

    非常協調且有節奏感的運動,

  • coming from descending modulation from higher parts of the brain,

    而這些輸入訊號,

  • like the motor cortex, the cerebellum, the basal ganglia,

    就是從大腦內較高部位 發射出來的「下行性調控」訊號,

  • will all modulate activity of the spinal cord

    就如同運動皮質層、 小腦,基底核一樣,

  • while we do locomotion.

    而當我們在做肢體活動的時候,

  • But what's interesting is to what extent just a low-level component,

    它能夠調控脊髓的所有活動。

  • the spinal cord, together with the body,

    有趣的是,在某些程度上,

  • already solve a big part of the locomotion problem.

    這些脊髓,連同身體,

  • You probably know it by the fact that you can cut the head off a chicken,

    已經可以解決大部份肢體的活動問題。

  • it can still run for a while,

    你大概也知道一個事實, 當一隻雞被砍頭之後,

  • showing that just the lower part, spinal cord and body,

    它還可以再跑一會兒,

  • already solve a big part of locomotion.

    這表示,僅僅較低部位的脊髓和身體,

  • Now, understanding how this works is very complex,

    已經解決了大部份肢體活動的問題。

  • because first of all,

    要理解這是如何運作的, 其實也蠻複雜的,

  • recording activity in the spinal cord is very difficult.

    因為,首先,

  • It's much easier to implant electrodes in the motor cortex

    要記錄脊髓裡面的活動非常困難。

  • than in the spinal cord, because it's protected by the vertebrae.

    在大腦運動皮層植入電極遠比 在脊髓植入電極容易,

  • Especially in humans, very hard to do.

    因為它被脊椎骨保護著。

  • A second difficulty is that locomotion is really due to a very complex

    尤其是在人類身上,非常難辦到。

  • and very dynamic interaction between these four components.

    第二個困難,有很大的原因是, 肢體行動在這四個元件之間,

  • So it's very hard to find out what's the role of each over time.

    是非常複雜且動態交互作用著的。

  • This is where biorobots like Pleurobot and mathematical models

    所以每次要找出那一個元件 擔任那一個角色,真的是很困難。

  • can really help.

    這也是為什麼機械生物,

  • So what's biorobotics?

    在建立像是機械蠑螈和 數學模組上很有幫助的原因。

  • Biorobotics is a very active field of research in robotics

    所以甚麼是機械生物呢?

  • where people want to take inspiration from animals

    機械生物是機械科研裡 一個非常活躍的領域,

  • to make robots to go outdoors,

    人們都想從動物裡得到啟發,

  • like service robots or search and rescue robots

    製成一些可以到户外去的機械人,

  • or field robots.

    像是一些服務業機械人, 或是可從事搜索和救援的機械人

  • And the big goal here is to take inspiration from animals

    或是農耕機械人。

  • to make robots that can handle complex terrain --

    而主要目的就是, 要從動物身上得到啟發

  • stairs, mountains, forests,

    來製造一些機械人, 可以處理一些複雜的地形--

  • places where robots still have difficulties

    像是樓梯、山脈、森林、

  • and where animals can do a much better job.

    一些機械人仍然遇到困難的地方,

  • The robot can be a wonderful scientific tool as well.

    以及動物可以做得更好的地方。

  • There are some very nice projects where robots are used,

    機械人同樣也是神奇的科研工具,

  • like a scientific tool for neuroscience, for biomechanics or for hydrodynamics.

    有些很棒的科研項目利用機械人

  • And this is exactly the purpose of Pleurobot.

    做為腦神經、生物力學 或水力學的科研工具。

  • So what we do in my lab is to collaborate with neurobiologists

    而這就是做機械蠑螈的目的。

  • like Jean-Marie Cabelguen, a neurobiologist in Bordeaux in France,

    在我的實驗室,我們夥同腦神經生物學家

  • and we want to make spinal cord models and validate them on robots.

    例如法國波爾多的腦神經生物學家 Jean-Marie Cabelguen,

  • And here we want to start simple.

    我們打算製作出脊髓的模型, 然後在機器人上驗証。

  • So it's good to start with simple animals

    我們希望從簡單出發。

  • like lampreys, which are very primitive fish,

    所以從簡單的動物開始就好,

  • and then gradually go toward more complex locomotion,

    像是七鰓鰻,非常原始的魚類,

  • like in salamanders,

    然後逐漸地邁向更複雜的肢體活動,

  • but also in cats and in humans,

    像是蜥蜴,

  • in mammals.

    但也包含貓、人類,

  • And here, a robot becomes an interesting tool

    哺乳動物等。

  • to validate our models.

    所以,機械人成為了一個

  • And in fact, for me, Pleurobot is a kind of dream becoming true.

    可以驗証我們模型的有趣工具。

  • Like, more or less 20 years ago I was already working on a computer

    事實上對我來說,機械蠑螈 算是圓了我一個夢想。

  • making simulations of lamprey and salamander locomotion

    大概二十年前,在我博士班的期間,

  • during my PhD.

    我已經在電腦上,製作一些

  • But I always knew that my simulations were just approximations.

    七鰓鰻和蜥蜴肢體活動的模擬,

  • Like, simulating the physics in water or with mud or with complex ground,

    但我一直以來都知道, 我的模擬只是粗略概算。

  • it's very hard to simulate that properly on a computer.

    像是在水中模擬物理現象, 或是在混雜泥土裡或是複雜的地表面上,

  • Why not have a real robot and real physics?

    這些都是很難在電腦上適當地模擬出來的。

  • So among all these animals, one of my favorites is the salamander.

    為什麼不乾脆做一個 真實的機械人或真實的物體?

  • You might ask why, and it's because as an amphibian,

    在眾多的動物裡,蜥蜴是我喜歡的其中之一。

  • it's a really key animal from an evolutionary point of view.

    你大概想知道為什麼, 因為以兩棲動物而言,

  • It makes a wonderful link between swimming,

    從進化的角度來看, 蜥蜴其實是很重要的動物。

  • as you find it in eels or fish,

    它完美的串聯起

  • and quadruped locomotion, as you see in mammals, in cats and humans.

    水棲動物的游泳 (像是鰻魚或魚)

  • And in fact, the modern salamander

    以及哺乳類動物的四肢活動 (像是貓或人)。

  • is very close to the first terrestrial vertebrate,

    事實上,現代的蜥蜴

  • so it's almost a living fossil,

    與第一代的陸棲脊椎動物非常相近,

  • which gives us access to our ancestor,

    幾乎就是一種活化石,

  • the ancestor to all terrestrial tetrapods.

    讓我們可以接近自己的祖宗,

  • So the salamander swims

    所有陸棲四肢動物的祖宗。

  • by doing what's called an anguilliform swimming gait,

    蜥蜴是藉由一種稱為鰻游的泳態,

  • so they propagate a nice traveling wave of muscle activity from head to tail.

    來進行游泳的動作,

  • And if you place the salamander on the ground,

    它們從頭部到尾部的肌肉活動, 傳遞出一種很優美的游行波浪。

  • it switches to what's called a walking trot gait.

    而當你把蜥蜴放在地面上時,

  • In this case, you have nice periodic activation of the limbs

    它又會轉化為快走的步態。

  • which are very nicely coordinated

    在這個案例,你有很好的 週期性肢體律動

  • with this standing wave undulation of the body,

    可以非常好地協調出

  • and that's exactly the gait that you are seeing here on Pleurobot.

    這樣持續性波浪的身體起伏,

  • Now, one thing which is very surprising and fascinating in fact

    就如你們現在所看到的 機械蠑螈的步態。

  • is the fact that all this can be generated just by the spinal cord and the body.

    事實上,其中一件很令人訝異 卻又讚嘆的事實就是...

  • So if you take a decerebrated salamander --

    這些活動可以僅藉由 脊髓和身體就可以啟動了。

  • it's not so nice but you remove the head --

    所以即使是一隻沒有腦袋的蜥蜴 --

  • and if you electrically stimulate the spinal cord,

    那不是太好, 但當移除了頭顱--

  • at low level of stimulation this will induce a walking-like gait.

    而你用電殛刺激脊髓,

  • If you stimulate a bit more, the gait accelerates.

    在低電流的刺激下, 會做出走路一樣的步態。

  • And at some point, there's a threshold,

    如果你稍稍加強刺激度, 步伐就會隨之加快。

  • and automatically, the animal switches to swimming.

    到了若干程度,會有一個臨界點,

  • This is amazing.

    隨後,動物會自動地 從行走轉為游泳

  • Just changing the global drive,

    這真是神乎其技。

  • as if you are pressing the gas pedal

    只是改變了中央的驅動器,

  • of descending modulation to your spinal cord,

    就如同你在踩油門一樣,

  • makes a complete switch between two very different gaits.

    把下行性調控訊號傳遞到你的脊髓,

  • And in fact, the same has been observed in cats.

    在兩種不一樣的模式間相互切換。

  • If you stimulate the spinal cord of a cat,

    其實同樣的情況, 在貓身上也觀察得到,

  • you can switch between walk, trot and gallop.

    如果你刺激一隻貓的脊髓,

  • Or in birds, you can make a bird switch between walking,

    你能夠在其間切換模式: 行走、緩跑和急步跑。

  • at a low level of stimulation,

    或在鳥類身上,你可以隨興 切換一隻小鳥,

  • and flapping its wings at high-level stimulation.

    在低電流時,走路,

  • And this really shows that the spinal cord

    在高電流刺激時,揮動翅膀。

  • is a very sophisticated locomotion controller.

    而這告訴我們,

  • So we studied salamander locomotion in more detail,

    脊髓是個非常複雜精密的 肢體行動控制器。

  • and we had in fact access to a very nice X-ray video machine

    於是我們更仔細的研究蜥蜴的肢體行動,

  • from Professor Martin Fischer in Jena University in Germany.

    其我們有一部很好的X光錄影機,

  • And thanks to that, you really have an amazing machine

    是由德國 Jena 大學的 Martin Fischer 教授所提供。

  • to record all the bone motion in great detail.

    感謝有這部神奇的機器,

  • That's what we did.

    把所有的骨骼行動都仔細的紀錄下來。

  • So we basically figured out which bones are important for us

    這就是我們在做的事。

  • and collected their motion in 3D.

    基本上,我們找出了 對我們來說重要的骨骼,

  • And what we did is collect a whole database of motions,

    並且收集它們的3D動作。

  • both on ground and in water,

    我們所做的就是收集 整個骨骼的動作資料庫,

  • to really collect a whole database of motor behaviors

    從水上到陸上,

  • that a real animal can do.

    實際地去收集一隻動物所有的

  • And then our job as roboticists was to replicate that in our robot.

    移動行為資料庫。

  • So we did a whole optimization process to find out the right structure,

    而我們機械設計學家的工作就是, 將這些資料複製到我們的機械人。

  • where to place the motors, how to connect them together,

    所以我們做了全方位的優化程序 來找出正確的結構、

  • to be able to replay these motions as well as possible.

    在哪裡放置馬達、

  • And this is how Pleurobot came to life.

    如何把它們連接一起, 盡可能地重製出這些動作等等。

  • So let's look at how close it is to the real animal.

    機械蠑螈就是這樣成型的。

  • So what you see here is almost a direct comparison

    讓我們來看看它跟 真正的動物有多近似。

  • between the walking of the real animal and the Pleurobot.

    你現在看到的是, 真正的動物和機械蠑螈在行走時

  • You can see that we have almost a one-to-one exact replay

    直接對比的影片。

  • of the walking gait.

    你可以看到幾乎是一比一的比例,

  • If you go backwards and slowly, you see it even better.

    重演着走路的步態。

  • But even better, we can do swimming.

    如果你倒退或慢動作,你可以看得更清楚。

  • So for that we have a dry suit that we put all over the robot --

    更棒的是,我們可以游泳。

  • (Laughter)

    我們甚至為機械蠑螈穿上了潛水衣--

  • and then we can go in water and start replaying the swimming gaits.

    (笑聲)

  • And here, we were very happy, because this is difficult to do.

    然後我們可以到水裡, 開始重製游泳的泳態。

  • The physics of interaction are complex.

    我們對於此很高興, 因為這個真的很難。

  • Our robot is much bigger than a small animal,

    互動的物理現象相當複雜。

  • so we had to do what's called dynamic scaling of the frequencies

    我們的機械蠑螈要比小動物大很多,

  • to make sure we had the same interaction physics.

    所以我們得找出 稱之為「等比例動態」的頻率,

  • But you see at the end, we have a very close match,

    來確定我們也得到了 一樣的互動物理現象。

  • and we were very, very happy with this.

    你可以看到, 最後我們可以非常接近地運動,

  • So let's go to the spinal cord.

    所以我們對此非常非常的高興。

  • So here what we did with Jean-Marie Cabelguen

    現在我們來看看脊髓。

  • is model the spinal cord circuits.

    我們跟 Jean-Marie Cabelguen 一起

  • And what's interesting is that the salamander

    模擬了脊髓的迴路。

  • has kept a very primitive circuit,

    有趣的是,蜥蜴

  • which is very similar to the one we find in the lamprey,

    保持了最原始的迴路,

  • this primitive eel-like fish,

    非常相近於我們找到的七鰓鰻,

  • and it looks like during evolution,

    這個像鰻魚的原始魚類,

  • new neural oscillators have been added to control the limbs,

    看起來像是在進化期間,

  • to do the leg locomotion.

    有新的神經振動器 會被加進來去控制肢體

  • And we know where these neural oscillators are

    來帶動腿的行動。

  • but what we did was to make a mathematical model

    我們知道這些神經振動器在哪裡,

  • to see how they should be coupled

    但我們要做的是,計算出數學模式,

  • to allow this transition between the two very different gaits.

    看看怎樣把他們配對起來,

  • And we tested that on board of a robot.

    來讓這兩種非常不同的 動作可以自由轉換。

  • And this is how it looks.

    我們就在機械蠑螈的電板上測試。

  • So what you see here is a previous version of Pleurobot

    而它看起來就像是這樣。

  • that's completely controlled by our spinal cord model

    這裡你們看到的是, 上一代版本的機械蠑螈,

  • programmed on board of the robot.

    完全由我們輸入在電路板上

  • And the only thing we do

    的脊髓模組程式所控制。

  • is send to the robot through a remote control

    我們唯一做的是,

  • the two descending signals it normally should receive

    透過遥控器,向機械人發出

  • from the upper part of the brain.

    兩組下行性調控訊號,而這通常源自於

  • And what's interesting is, by playing with these signals,

    腦部的上半部分。

  • we can completely control speed, heading and type of gait.

    有趣的是,通過這些訊號

  • For instance,

    我們可以完全控制速度、前進、步、泳態。

  • when we stimulate at a low level, we have the walking gait,

    比方說,

  • and at some point, if we stimulate a lot,

    當我們透過低電流作出刺激時, 我們得到的是行走的狀態,

  • very rapidly it switches to the swimming gait.

    來到某種程度, 如果我們加強了刺激 ,

  • And finally, we can also do turning very nicely

    它會迅速地轉化為游泳的狀態。

  • by just stimulating more one side of the spinal cord than the other.

    最後,我們也可輕鬆的轉向

  • And I think it's really beautiful

    主要在脊髓左右兩邊, 在其中的一邊加以刺激就可以了。

  • how nature has distributed control

    我覺得這真是漂亮

  • to really give a lot of responsibility to the spinal cord

    自然界先天的分配了控制權

  • so that the upper part of the brain doesn't need to worry about every muscle.

    把很多責任交付予脊髓,

  • It just has to worry about this high-level modulation,

    所以大腦的上半部分 不需要再煩惱每一條肌肉。

  • and it's really the job of the spinal cord to coordinate all the muscles.

    大腦只負擔高層次的調節,

  • So now let's go to cat locomotion and the importance of biomechanics.

    協調各肌肉的任務, 就交付予脊髓了。

  • So this is another project

    現在我們來看看貓的行動 和生物力學的重要性。

  • where we studied cat biomechanics,

    這是另一個項目,

  • and we wanted to see how much the morphology helps locomotion.

    我們研究貓的生物力學,

  • And we found three important criteria in the properties,

    而我們想知道形態學 對於肢體活動的幫助。

  • basically, of the limbs.

    我們得出了三個性質的標準,

  • The first one is that a cat limb

    基本上,就是肢體內的性質。

  • more or less looks like a pantograph-like structure.

    首先就是貓的肢體,

  • So a pantograph is a mechanical structure

    大概類似導電弓架的結構。

  • which keeps the upper segment and the lower segments always parallel.

    導電弓架是一個機電的結構

  • So a simple geometrical system that kind of coordinates a bit

    永恆的保持着 上部份和下部份的平行。

  • the internal movement of the segments.

    其實就是一個簡單的幾何系統,

  • A second property of cat limbs is that they are very lightweight.

    協調着各部位的內部移動。

  • Most of the muscles are in the trunk,

    貓兒肢體的第二個性質是非常輕量。

  • which is a good idea, because then the limbs have low inertia

    大部份的肌肉集中在驅體內,

  • and can be moved very rapidly.

    這是很棒的點子,因為這樣 肢體不會有低度的惰性

  • The last final important property is this very elastic behavior of the cat limb,

    反而能夠迅速的活動。

  • so to handle impacts and forces.

    最後很重要的性質是,貓的肢體彈力很強,

  • And this is how we designed Cheetah-Cub.

    有利於處理好衝擊力和震盪力。

  • So let's invite Cheetah-Cub onstage.

    我們也是如此設計小獵豹的。

  • So this is Peter Eckert, who does his PhD on this robot,

    現在有請小獵豹到台上來。

  • and as you see, it's a cute little robot.

    這位是 Peter Eckert, 他用這部機械人作他的博士學位研究,

  • It looks a bit like a toy,

    你可以看到,這是一隻可愛的小機械。

  • but it was really used as a scientific tool

    它看起來有點像是玩具,

  • to investigate these properties of the legs of the cat.

    但其實卻是個科研工具,

  • So you see, it's very compliant, very lightweight,

    用來查證貓兒四腿的特質。

  • and also very elastic,

    你可以看到,它非常柔韌,非常輕量,

  • so you can easily press it down and it will not break.

    同時也非常的彈性,

  • It will just jump, in fact.

    所以你可以很輕鬆的 把它壓下而絲毫不損。

  • And this very elastic property is also very important.

    實際上,它只會彈跳。

  • And you also see a bit these properties

    這個彈力的性質也非常重要。

  • of these three segments of the leg as pantograph.

    你同時也可以看到一些其他特質,