字幕列表 影片播放
-
How long do you think it will take
你覺得距離機械取代並勝任你的工作還有多久時間?
-
before machines do your job better than you do?
過去自動化指機械只能在工廠內執行
-
Automation used to mean big stupid machines doing repetitive work in factories.
無須用腦且高重複性的工作
-
Today they can land aircraft, diagnose cancer and trade stocks.
現在,他們學會了降落飛機,診斷癌症和貿易股票
-
We are entering a new age of automation unlike anything that's come before.
我們正在進入前所未有的自動化新時代
-
According to a 2013 study, almost half of all jobs in the
2013年的一項研究表明, 美國幾乎一半的工作可能在未來二十年內實現自動化
-
US could potentially be automated in the next two decades.
可是等等… 自動化不是已經存在幾十年了嗎?
-
But wait; Hasn't automation been around for decades?
這一次有什麼不同?
-
What's different this time?
(以前的創新)
-
Things used to be simple.
以前一切事物簡單直接
-
Innovation made human work easier and productivity rose.
創新使人類工作變得更加容易 生產效率也隨之提高
-
Which means that more staff or services could be produced
這意味著在單位人數和時間內 可以生產更多的產品及服務
-
per hour using the same amount of human workers.
雖然減少了許多就業機會 不過同時也創造了更多更好的工作機會
-
This eliminated many jobs, but also created other jobs that were better
為解決人們增長的工作需求提供了重要的幫助
-
which was important because the growing population needed work.
簡單地說,創新帶來更高的生產效率 減少了舊工作,但同時帶來更多更新更好的工作
-
So, in a nutshell, innovation, higher productivity,
總體而言,大家都適應了這個模式 生活水準也有所提高
-
fewer old jobs, and many new and often better jobs.
人類的發展是可以很明顯區分的 在很長一段期間裡,我們大多從事農業的工作
-
Overall, this worked well for a majority of people and living standards improved.
工業革命後,某些農民走向製造業 而當自動化機械普及後,人類又走向了服務業
-
There's a clear progression in terms of what humans did for
在不久之前,人類進入了資訊時代
-
a living. For the longest time, we worked in agriculture.
剎那間,所有的規則都被改變了 我們的工作被比過去更有效的機器給取代了
-
With the Industrial Revolution, this shift into production jobs and as
這顯然令人擔憂 不過…創新一定會拯救我們的,對吧?
-
automation became more widespread, humans shifted into service jobs.
雖然新資訊時代產業蓬勃發展 但是他們創造的新工作卻越來越少
-
And then only a few moments ago in human history, the Information Age happened.
1979年,通用汽車雇用超過80萬工人 賺取約110億美元
-
Suddenly, the rules were different. Our jobs are now being
在2012年,Google賺取了約140億美元 卻只聘請了58萬人
-
taken over by machines much faster than they were in the past.
你可能覺得這種比較沒什麼意義 但Google就是一個創造新就業機會的——新興產業
-
That's worrying of course... but innovation will clearly save us, right?
舊行業逐漸失去動力 單以汽車行業為例 - 當100年前他們新興時
-
While new information age industries are booming,
他們創造了許多巨大的行業 汽車改變了我們的生活方式
-
they are creating fewer and fewer new jobs.
我們的基礎設施,和我們的城市規劃
-
In 1979, General Motors employed more than 800,000
數以百萬計的人也因此直接或間接找到工作 幾十年投資維持了整個趨勢
-
workers and made about $11 billion US dollars.
如今,這個過程已基本飽和
-
In 2012, Google made about $14 billion US dollars while employing 58,000 people.
在汽車行業的創新已經不能像新興時創造那麼多就業崗位 雖然電動車還是非常有潛力的
-
You may not like this comparison, but Google is
那也不會突然創造數百萬個新的就業機會 那等等……網路呢 ?
-
an example of what created new jobs in the past:
一些資訊專家認為 網路是電力普及衍生的產物
-
Innovative new industries.
如果用此作為對照,我們可以看出 新時代創新與舊時代創新的區別
-
Old innovative industries are running out of steam. Just look at cars.
網路創造了新的產業
-
When they became a thing 100 years ago, they created huge industries.
但它所創造的不足以彌補人口增長的
-
Cars transformed our way of life, our infrastructure, and our cities.
更不能補足被網路傷害的舊產業
-
Millions of people found jobs either directly or indirectly.
百視達(一家錄影帶出租公司)在巔峰期 2004年 聘請了 84,000名員工,並獲得 60億美元的收入
-
Decades of investment kept this momentum going.
但在2016 Netflix公司只有有4、500多名員工 卻可盈利 90億美元
-
Today, this process is largely complete. Innovation in the
或以我們自己為例,雖然全職的員工只有 12人
-
car industry does not create as many jobs as it used to.
Kurzgesagt卻可以被百萬人收看
-
While electric cars are great and all, they won't create millions of new jobs.
一個電視台若要達到如此效果需要更多更多的員工
-
But wait; what about the internet?
資訊時代的創新並未能夠創造足夠的新工作機會
-
Some technologists argue that the Internet is an
這已經夠糟糕了 但現在新一代的自動化潮流正在慢慢取代人們的工作
-
innovation on a par of the introduction of electricity.
(機器的新種類)
-
If we go with this comparison, we see how our
要了解這一點,我們需要先理解自己 人類的進步是基於勞動的分配
-
modern innovation differs from the old one.
千年下來,我們的工作愈發地專業化
-
The Internet created new industries,
即使現在的智慧機械 在處理某些複雜的事情上表現仍不理想
-
but they're not creating enough jobs to keep up
但它們能在特定、可預測性高的工作環境下完美地工作
-
with population growth or to compensate for the industries the Internet is killing.
這摧毀了許多工廠的工作崗位
-
At its peak in 2004,
不過如果我們詳細研究複雜漫長的工作
-
Blockbuster had 84,000 employees and made $6 billion US dollars in revenue.
我們會發現,其實它們都是由許許多多 簡單重複的小工作一件接一件地串聯下來的
-
In 2016, Netflix had 4,500 employees and made $9 billion dollars in revenue.
現在的機器已經差不多能夠有效地把大而複雜的事物 打散成各種重複性高的工作
-
Or take us, for example.
而人類將逐漸地失去專精化這塊領地
-
With a full-time team of just 12 people, Kurzgesagt reaches millions of people.
我們已在被淘汰的邊緣
-
A TV station with the same amount of viewers needs way more employees.
3C產品通過機器學習 以大量訊息及通過分析數據獲取技能
-
Innovation in the Information Age doesn't equate to
它們會因為訊息的串聯而表現更佳
-
the creation of enough new jobs, which would be bad
機械能夠自我學習
-
enough on its own but now, a new wave of automation and
欲使電腦專精於某事情,我們只需提供大量有關的數據
-
a new generation of machines is slowly taking over.
當你在網上購物時 它會慢慢學習並提示一些你可能感興趣的物品 從而讓你買更多東西
-
To understand this, we need to understand ourselves first.
機器學習的快速發展依賴於這幾年來
-
Human progress is based on the division of labor.
人類開始收集有關一切事物的數據
-
As we advanced over thousands of years, our jobs became more and more specialized.
行為、天氣模式、醫療記錄、通訊系統
-
While even our smartest machines are bad at doing complicated jobs,
旅遊數據,當然還有有關工作習慣的數據
-
they are extremely good at doing narrowly defined and predictable tasks.
我們已意外的建立了一個巨大的圖書館 而機器可以使用它來學習人類如何做事
-
This is what destroyed factory jobs.
以及如何做得更好 這些數位化的機械可能是所有工作的最大殺手
-
But look at a complex job long and hard enough,
它們可以快速的複製 你還可以免費的升級它們
-
and you'll find that it's really just many narrowly
只需要使用新的代碼,而不需要投入材料
-
defined and predictable tasks one after another.
這樣他們就有能力工作的更快,有多快呢?
-
Machines are on the brink of becoming so good at
如果你的工作涉及到使用現今電腦的複雜程式 那麼你可能會早於在工廠工作的人失去工作
-
breaking down complex jobs into many predictable ones,
這有一個真實世界的例子展示這種過渡是如何發生的
-
that for a lot of people, there will be no further room to specialize.
一家舊金山公司提供某大公司一款管理軟體
-
We are on the verge of being outcompeted.
這款軟體可以勝任中層管理人員的職務
-
Digital machines do this via machine learning,
當它被指派去處理一個新的工作項目時
-
which enables them to acquire information and skills by analyzing data.
軟體首先會區分哪些工作可以使用自動化機械
-
This makes them become better at something through the relationships they discover.
而哪些需要專業人士完成 然後在網路上招募一個由自由業者組成的團隊
-
Machines teach themselves.
然後軟體給人類分配任務
-
We make this possible by giving a computer a lot of
監視工作品質,追蹤個人表現
-
data about the thing we wanted to become better at.
直到這個項目完全完成 好的,這聽起來貌似不算太壞
-
Show a machine all the things you bought online,
這台機器只取代了一種職業 卻為許多自由業者創造了工作機會,不是嗎?
-
and it will slowly learn what to recommend to you, so you buy more things.
其實在自由業者完成他們任務時 學習演算法會追蹤他們
-
Machine learning is now meeting more of its potential because in recent years,
然後收集有關他們工作的數據 以及這些任務實際由什麼組成
-
humans have started to gather data about everything.
所以實際發生的是 自由業者正在教會機器如何取代他們
-
Behavior, weather patterns, medical records, communication systems,
這個軟體平均可以在第一年減少50%的成本
-
travel data, and of course, data about what we do at work.
而在第二年減少25% 這只是許多例子中的一種
-
What we've created by accident is a huge library machines can
現在在許多領域 機械和程式可以做的與人類一樣好甚至更好
-
use to learn how humans do things and learn to do them better.
從藥劑師到分析師 記者到放射科醫師
-
These digital machines might be the biggest job killer of all.
收銀員到銀行櫃員 或是翻漢堡肉的非技術人員
-
They can be replicated instantly and for free.
所有這些工作都不會一夜消失 但做這些工作的人會越來越少
-
When they improve, you don't need to invest in
這會導致什麼,讓我們下次再說
-
big metal things; you can just use the new code.
職業消失是件可怕的事情,但這只是這個故事的一半
-
And they have the ability to get better fast. How fast?
(要停下來,我們需要進步得非常快)
-
If your work involves complex work on a computer today, you might be out
一個舊的職業被一個新的職業替代是完全不夠的 我們需要不斷創造新的工作崗位
-
of work even sooner than the people who still have jobs in factories.
因為世界人口在不斷增長 過去我們透過創新解決了這個
-
There are actual real-world examples of how this transition might be happening.
但自1973年以來,美國新的就業機會已經開始收縮
-
A San Francisco company offers a project management software for big
二十一世紀的第一個十年
-
corporations, which is supposed to eliminate middle management positions.
是美國的工作總量第一次沒有增長的十年
-
When it's hired for a new project, the software first decides which jobs
為了平衡人口增長 一個國家每個月需要創造150,000個新的就業機會
-
can be automated and precisely where it needs actual professional humans.
這是一個壞消息 而且它正在影響人類的生活水準
-
It then helps assemble a team of freelancers over the Internet.
在過去,隨著生產力的提高,顯而易見地
-
The software then distributes tasks to the humans, and controls the quality
更多更好的就業機會將被創造 但是數據卻告訴我們一個不同的故事
-
of the work, tracking individual performance until the project is complete.
在1998年美國所有的工人共工作了1940億小時
-
Okay. This doesn't sound too bad.
在15年後的2013年他們多生產了42%的生產量
-
While this machine is killing one job, it creates jobs for freelancers, right?
但美國工人依然只工作了1940億小時
-
Well, as the freelancers complete their tasks,
這意味著儘管生產效率大幅增長 且數以千計的新業務被開拓
-
learning algorithms track them, and gather data
而美國的人口增長超過4000萬人 工人的工作時間在15年後的今天卻沒有絲毫的增長
-
about their work, and which tasks it consists of.
與此同時 美國新畢業大學生的工資在過去十年一直在下降
-
So what's actually happening, is that
高達40%的應屆畢業生被迫接受不需要學位的工作
-
the freelancers are teaching a machine how to replace them.
(結論)
-
On average, this software reduces costs by about 50%
生產力正在與人類的勞動分離
-
in the first year, and by another 25% in the second year.
創新的實質與資訊時代 與我們之前所遇到的不再相同
-
This is only one example of many.
這個改變在好幾年前就已經開始 並且已經很順利地推展了
-
There are machines and programs getting as good
即使沒有新的科技出現 像自動駕駛汽車或機械會計師
-
or better than humans in all kinds of fields.
這次自動化看起來是不同的 這一次機械可能真的會取代我們的工作
-
From pharmacists to analysts, journalists to radiologists,
我們的經濟體系基於人民消費
-
cashiers to bank tellers, or the unskilled worker flipping burgers.
但如果越來越少的人有體面的工作 誰來負責消費呢?
-
All of these jobs won't disappear overnight,
我們的生產將會越來越廉價 當生產廉價到一定程度時
-
but fewer and fewer humans will be doing them.
只有非常少數人可以買得起我們現在所有的產品和服務
-
We'll discuss a few cases in a follow-up video.
或者未來我們將要看到 少數擁有機械的大富翁主宰其他剩餘的人
-
But while jobs disappearing is bad, it's only half of the story.
我們的未來真的那麼黑暗嗎?
-
It's not enough to substitute old jobs with new ones.
這部影片的基調是比較黑暗的 在現實中完全無法確定事情會朝悲觀那面發展
-
We need to be generating new jobs constantly
資訊時代和現代自動化技術 可能是一個巨大的機會
-
because the world population is growing.
去改變人類社會,大幅減少貧困和不平等現象
-
In the past we have solved this through innovation.
這可能是人類歷史上的一個開創性時刻
-
But, since 1973, the generation of new jobs in the US has begun to shrink.
我們將在這系列的影片中的第二部分 討論這種潛力和可能性,如全民基本收入
-
And the first decade of the 21st century, was the first one, where
我們應該仔細思考,因為有一件事是確定的
-
the total amount of jobs in the US, did not grow for the first time.
機械不會慢慢走進我們的生活 因為他們已經在我們的生活中了
-
In a country that needs to create up to 150,000 new jobs per
我們用了900小時左右的時間來製作這個影片
-
month, just to keep up with population growth, this is bad news.
製作週期超過九個月
-
This is also starting to affect standards of living.
沒有您在patreon.com的贊助 製作這樣的影片是不可能的
-
In the past, it was seen as obvious that with rising
如果您想支持我們並獲得Kurzgesagt客製化小鳥作為禮物, 您的贊助能大大地幫助我們
-
productivity, more and better jobs would be created.
這部影片參考了兩本非常棒的書籍
-
But the numbers tell a different story.
《The Rise of the Robots》 以及《The Second Machine Age》
-
In 1998, US workers worked a total of 194 billion hours.
您可以在影片下方的簡介中找到它們的購買網址
-
Over the course of the next 15 years, their output increased by 42 percent.
我們製作了一個小的機器人海報
-
But in 2013, the amount of hours worked by US workers was still 194 billion hours.
您可以在我們的DFTBA商店中 購買這款海報和許多其他的商品
-
What this means, is that despite productivity growing
這部影片是一個大的、 講述科技已經或將永久改變人類生活的系列的其中一部
-
drastically, thousands of new businesses opening up, and the
如果你想繼續了解這方面的知識 這裡有一個小的播放列表
-
US population growing by over 40 million, there was no
-
growth at all in the number of hours worked in 15 years.
-
At the same time, wages for new university graduates
-
in the US, have been declining for the past decade,
-
while up to 40 percent of new graduates, are forced
-
to take on jobs that don't require a degree.
-
Productivity is separating from human labor.
-
The nature of innovation in the Information Age is
-
different from everything we've encountered before.
-
This process started years ago and is already well underway.
-
Even without new disruptions like self-driving cars, or robot accountants.
-
It looks like automation is different this time.
-
This time, the machines might really take our jobs.
-
Our economies are based on the premise that people consume.
-
But if fewer and fewer people have decent work, who will be doing all the consuming?
-
Are we producing ever more cheaply only to arrive at a point where
-
too few people can actually buy all our stuff and services?
-
Or, will the future see a tiny minority of the super rich who own the machines...
-
dominating the rest of us?
-
And does our future really have to be that grim?
-
While we were fairly dark in this video, it's far
-
from certain that things will turn out negatively.
-
The Information Age and modern automation, could be a huge opportunity
-
to change human society, and reduce poverty and inequality drastically.
-
It could be a seminal moment in human history.
-
We'll talk about this potential, and possible solutions like
-
a universal basic income, in part 2 of this video series.
-
We need to think big, and fast.
-
Because one thing's for sure, the machines are not coming;
-
They are already here.
-
This video took us about 900 hours to make,
-
and we've been working on it for over nine months.
-
Projects like this one would not be possible
-
without your support on patreon.com.
-
If you want to help us out and get a personal
-
Kurzgesagt bird in return, that would be really useful.
-
We based much of this video on two very good books:
-
and
-
You can find links to both of them in the video description; highly recommended!
-
Also, we made a little robot poster.
-
You can buy it and a lot of other stuff in our DFTBA shop.
-
This video is part of a larger series about how technology
-
is already changing and will change human life forever.
-
If you want to continue watching, we have a few playlists.