字幕列表 影片播放
-
The Heisenberg Uncertainty Principle is one of a handful of ideas
海森堡測不準原理,或"不確定性原理" 是少數可以從量子物理領域
-
from quantum physics to expand into general pop culture.
拓展到普羅大眾文化的物理原理之一
-
It says that you can never simultaneously know the exact position
它指出我們無法既確定一個物體的位置
-
and the exact speed of an object and shows up as a metaphor in everything
又同時精準測得這它的速率。 這在許多領域被當成隱喻使用
-
from literary criticism to sports commentary.
從藝文評論到體育播報領域都有
-
Uncertainty is often explained as a result of measurement,
測不準原理常常被認為源自於測量行為
-
that the act of measuring an object's position changes its speed, or vice versa.
測量物體位置的動作 同時會改變其速度,反之亦然
-
The real origin is much deeper and more amazing.
但是真正的原理更加深奧 也更加驚奇有趣
-
The Uncertainty Principle exists because everything in the universe
之所以會有測不準原理 是因為宇宙中的任何東西
-
behaves like both a particle and a wave at the same time.
都同時兼具「粒子」和「波」的兩種性質
-
In quantum mechanics, the exact position and exact speed of an object
在量子力學中,一個物體的 確切位置和速度是沒有意義的
-
have no meaning.
為了理解它
-
To understand this,
我們需要釐清一下: 表現得像「粒子」或像「波」的含意
-
we need to think about what it means to behave like a particle or a wave.
粒子可在某一時間存在於特定位置
-
Particles, by definition, exist in a single place at any instant in time.
我們能利用在特定位置 發現此物體的機率圖形
-
We can represent this by a graph showing the probability of finding
來呈現這個定義 圖形上會有一個高峰值
-
the object at a particular place, which looks like a spike,
物體在某個特定位置 出現的機率是 100%,在他處則都是 0%
-
100% at one specific position, and zero everywhere else.
而波則是「擾動」在空間中傳播的現象
-
Waves, on the other hand, are disturbances spread out in space,
就像是湖面上的漣漪
-
like ripples covering the surface of a pond.
我們可將「波」視為整體 然後確認其性質
-
We can clearly identify features of the wave pattern as a whole,
其中最重要的就是波長
-
most importantly, its wavelength,
波長是相鄰兩個波峰或波谷之間的距離
-
which is the distance between two neighboring peaks,
但是我們無法確認波的位置
-
or two neighboring valleys.
波在各種不同的位置出現的機率都很大
-
But we can't assign it a single position.
波長在量子物理學不可或缺的
-
It has a good probability of being in lots of different places.
因為物體的(物質波)波長與其動量有關
-
Wavelength is essential for quantum physics
動量 = 質量 Χ 速度
-
because an object's wavelength is related to its momentum,
一個快速運動的物體具有很大的動量
-
mass times velocity.
伴隨著波長很短的物質波
-
A fast-moving object has lots of momentum,
很重的物體即使動得不快 仍具有很大的動量
-
which corresponds to a very short wavelength.
同樣的,也代表了它的波長很短
-
A heavy object has lots of momentum even if it's not moving very fast,
這就是我們無法察覺 日常物體波動性質的原因
-
which again means a very short wavelength.
如果你丟出一個棒球
-
This is why we don't notice the wave nature of everyday objects.
它的波長是1公尺的10的33次方之一
-
If you toss a baseball up in the air,
因為實在是太小了,所以不可能被測到
-
its wavelength is a billionth of a trillionth of a trillionth of a meter,
但微小的物體,例如原子或電子束
-
far too tiny to ever detect.
波長就大到足以用物理實驗量測出來
-
Small things, like atoms or electrons though,
如果我們有一個純粹的波 就可以測量它的波長
-
can have wavelengths big enough to measure in physics experiments.
進而算出它的動量 但是卻無法測出它的確實位置
-
So, if we have a pure wave, we can measure its wavelength,
另一方面,我們很容易確知粒子的位置
-
and thus its momentum, but it has no position.
但它卻並沒有波長 所以我們不知道它的動量大小
-
We can know a particles position very well,
為了同時得到 一個粒子的位置與動量
-
but it doesn't have a wavelength, so we don't know its momentum.
我們需要融合兩種圖像
-
To get a particle with both position and momentum,
創造一個侷限 在很小區域的波圖像
-
we need to mix the two pictures
那該如何進行呢?
-
to make a graph that has waves, but only in a small area.
方法是:藉由疊加數個不同波長的的波
-
How can we do this?
因為一個波一種動量 這代表賦予物體具備不同動量的可能性
-
By combining waves with different wavelengths,
當我們將兩個波疊加起來時
-
which means giving our quantum object some possibility of having different momenta.
波峰對齊的地方會形成更高的波峰
-
When we add two waves, we find that there are places
在另外一些位置 因波峰與波谷對齊而相互抵銷
-
where the peaks line up, making a bigger wave,
結果就是有些地方我們看得到波
-
and other places where the peaks of one fill in the valleys of the other.
另一些地方,則什麼都沒有
-
The result has regions where we see waves
如果我們再加上第三個波
-
separated by regions of nothing at all.
那些波被抵銷的區域變大了
-
If we add a third wave,
加上第四個,持續變大 而有波的區域逐漸變窄
-
the regions where the waves cancel out get bigger,
如果我們持續疊加更多的波 就能得到一個波包
-
a fourth and they get bigger still, with the wavier regions becoming narrower.
在一個很小的區域內有一個確定的波長
-
If we keep adding waves, we can make a wave packet
這就得到了一個 同時擁有波與粒子屬性的物體
-
with a clear wavelength in one small region.
但是這樣一來 位置和動量都無法準確測得
-
That's a quantum object with both wave and particle nature,
物體並非侷限在一個單一位置上
-
but to accomplish this, we had to lose certainty
在波包內的範圍裡 我們發現物體的機率都很高
-
about both position and momentum.
我們透過疊加多個波得到波包
-
The positions isn't restricted to a single point.
意味著我們就有可能找到 與其中一個物體相對應的動量
-
There's a good probability of finding it within some range
導致位置與動量都無法精確測量
-
of the center of the wave packet,
這都與測不準原理有關
-
and we made the wave packet by adding lots of waves,
如果你想更精確的測量位置
-
which means there's some probability of finding it
就得用更多的波疊加起來, 加以建造出更小的波包
-
with the momentum corresponding to any one of those.
波數增加使動量更不確定
-
Both position and momentum are now uncertain,
如果你想更明確的得到動量值 就需要一個更大的波包
-
and the uncertainties are connected.
結果位置就更不確定
-
If you want to reduce the position uncertainty
這就是海森堡測不準原理
-
by making a smaller wave packet, you need to add more waves,
最初由德國物理學家 Werner Heisenberg 於1927 年提出
-
which means a bigger momentum uncertainty.
這種測不準的特性與測量的精確度無關
-
If you want to know the momentum better, you need a bigger wave packet,
是結合波和粒子 兩種性質之後不可避免的結果
-
which means a bigger position uncertainty.
測不準原理不僅僅 是測量上的實際限制
-
That's the Heisenberg Uncertainty Principle,
它是物體只能表現出 一種(波或粒子)性質的限制
-
first stated by German physicist Werner Heisenberg back in 1927.
已被建入宇宙基本構造之中
-
This uncertainty isn't a matter of measuring well or badly,
-
but an inevitable result of combining particle and wave nature.
-
The Uncertainty Principle isn't just a practical limit on measurment.
-
It's a limit on what properties an object can have,
-
built into the fundamental structure of the universe itself.